
J
H
E
P
1
2
(
2
0
0
8
)
0
0
7

Published by IOP Publishing for SISSA

Received: November 4, 2008

Accepted: November 15, 2008

Published: December 1, 2008

D-branes in orientifolds and orbifolds and Kasparov

KK-theory
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1. Introduction

Topological methods in physics have always been relevant in order to describe static stable

configuration of finite energy in field and string theories. D-branes have RR charge and

they are source of RR fields. Both of them are classified by K-theory in all different

theories. The recipe is that the K-theory is described by the classes of pairs of gauge

bundles over the worldvolume of the D9-D9 pair of the Type IIB string theory or on the

non-BPS D9 of the Type IIA theory. This description classifies all lower dimensional D-

branes coming from tachyon condensation called descendent branes. However the inverse

process of constructing higher dimensional D-branes from the lowest dimensional unstable

systems of D-instantons is also possible. This description is given by using K-homology.

The incorporation of the K-homology description in the context of Matrix theory was

done in [1]. This was called the K-matrix theory and is based in the process involving

configurations of non-BPS instanton in Type IIA string theory and D-instantons - anti

D-instantons in Type IIB theory. From these configurations, higher-dimensional D-branes

can be constructed and they are classified (through their worldvolumes) by the K-homology

groups. The D-branes are described and thus represented by equivalence classes of Connes

spectral triples (analytical data) used in noncommutative geometry. This equivalence is

physically defined in terms of the gauge equivalence and the charge conservation. For

different approaches of K-homology to D-brane classification see [2 – 5].

K-theory and K-homology are dual one of each other and it is compelling to use the

Kasparov (complex) KK-theory, which is a generalization of both theories. This was done

in [1] where the procedure of the construction of ascendent-descendent brane configuration

was implemented on the product space-time X × Y with the world-volume of the unsta-

ble D-brane wrapped on Y . The D-branes are classified in a natural way by the groups

KKi(X,Y ). In [6] it was shown that D-branes of the Type I theory are classified by (the

real/Orthogonal) KKOi(X,Y ).

Similarly to K-homology, there are several approaches for the KK-theory application

in describing D-brane physics [7, 8, 4]; but we will concentrate in the approach from [1].

Moreover, in the present paper we extend these results by showing that orientifolds

are classified by the Real KK-group KKRi(X,Y ) and orbifolds by the equivariant KK-

group KKi
G(X,Y ). In addition, we propose based on physical arguments, the existence

of different versions of the KK bifunctor which; as far as the authors knowledge have not

been discussed in the literature before. For all these theories, the spectrum is correctly

obtained. We also give an application to exotic orientifolds.

This paper is organized as follows. In section 2 a brief account of the classification

of D-branes through K-theory, K-homology and KK-theory is given. Section 3 is devoted

to describe Dd-branes in orientifold backgrounds by using the Real KKR-theory. In here
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we find general formulas which involve the two cases q ≤ p and p ≤ q. Here p is the

dimension of the orientifold plane Op and q is spatial dimension of the unstable Dq-brane.

Section 4 analyzes the theory on the unstable D-brane using the information provided by

the Clifford algebras involved in the definition of the KKR bifunctor. To be more specific we

will describe in some detail three important examples. The rest of the cases is summarized

in a table. Section 5 is devoted to make a proposal for extending the classification of

D-branes in orientifolds to other theories such as the Type IIB with Op+ (quaternionic)

and the IIB with O9+ (with gauge group USp(32)) orientifold in the context of Kasparov

KK-theory. At the end of this section, we explain an application of our formalism to exotic

orientifolds. D-branes in orbifold singularities with KKG-theory are discussed in section 6.

Finally in section 7 we give our final remarks. Four appendices collect a series of formal

results about KK-theory.

2. Classification of D-branes in orientifold planes

2.1 D-branes and K-theory

In Type II superstring theories D-branes are constructed as solitons on unstable systems

either formed by pairs of brane-antibranes or by single unstable D-branes [9]. This means

that any configuration of D-brane charges is realized as a gauge field configuration on a

stack of (sufficiently) many D9-D9 branes in Type IIB, or non-BPS D9-branes in Type

IIA by open string tachyon condensation. This was interpreted as a way to classify Dd-

brane charges by gauge bundles on the worldvolume of the D9-branes [10]. Hence, D-brane

charges turn out to be elements of a group constructed from equivalence classes of vector

bundles, namely K-theory.

In Type IIB theory Dd-brane charges are classified by the so called complex K-theory

group, which is valuated on the transversal space (with respect to the unstable system1)

to Dd. In particular, the K-theory group classifying a Dd-brane in Type IIB is given

by KU(R9−d) which renders the Dd-brane as a soliton constructed by the pair D9-D9.

One can instead consider a Dd-brane as a soliton constructed from an unstable system

formed by Dq-branes (q > d). The groups classifying the corresponding vector bundles

transversal to the Dd-brane worldvolume, in a nine-dimensional or q-dimensional unstable

system, are isomorphic as expected from Bott periodicity and are given by KU(R9−d) and

KU q−1(Rq−d) respectively.

D-brane classification by K-theory is a little more elaborated once we introduce discrete

actions on the background such as orientifolds or orbifolds. For instance, Ramond-Ramond

(RR) fields on which D-branes in Type I theory are charged, have a smaller number of

degrees of freedom due to the orientifold projection. This reduces the gauge group on the D-

brane to be orthogonal or symplectic implying that D-branes are classified by orthogonal K-

theory groups of the corresponding transversal spaces. Specifically, Dd-branes in Type I are

classified by KO(R9−d) which points out the presence of non-BPS states carrying discrete

1Throughout this paper, what we refer as “K-theory group” is really the reduced K-theory group of the

compactified space.
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topological charge [11]. These Dd-branes can also be thought of as solitonic constructions

from unstable pairs of D9-D9 branes on top of an orientifold nine-plane O9−. In a similar

context as before, we can try to understand the construction of Type I D-branes from

lower-dimensional unstable branes (which is justified since in general, super Yang-Mills

theories in 9+1 dimensions are non-renormalizable). In fact, it is possible to condense

open string tachyons from a pair of Dq-Dq on top of the orientifold nine-plane in order to

construct Dd-branes, which are classified by KOq−1(Rq−d) [12].

The situation becomes much more interesting by considering the presence of lower

dimensional orientifolds Op−. Classification of Dd-branes in such backgrounds was given

in [13] and it strongly depends on which type of orientifold background we are taking into

account. It turns out that for an orientifold with a positive squared involution (τ2 = 1)

and (−1)FL = 1 (i.e., for p = 1 mod 4) the real K-theory group which classifies Dd-branes

is KR(R9−p,p−d), where

R
9−p,p−d =

(
R

9−p/Ω · I9−p

)
× R

p−d, (2.1)

is the transversal space to the Dd-brane. The world-sheet operator Ω inverts the orientation

of the string while the involution I9−p maps transversal coordinates to the orientifold xi

to −xi. Notice that Dd-branes on top of an orientifold plane Op− are obtained as well by

pairs of D9-D9 in which the open string tachyons have been condensed. The corresponding

construction from lower (than nine) dimensional unstable systems will be studied in the

next section.

So far we have reviewed constructions of Dd-branes from unstable Dq-branes (q > d).

This means that each element of K-theory describes a lower-dimensional (than q) Dd-brane

obtained by tachyon condensation from unstable branes generalizing the D-brane descent

relations (see [9] and references therein).

However, it is also possible to elucidate the above construction from the tree-level

action of an unstable brane. Such an action is constructed in the Boundary String Field

Theory (BSFT) to the superstring [14]. For instance, the action of an unstable D9-brane

in Type IIA is given by

S = T9

∫
d10x

(
(ln 2)α′e−T 2/4∂µT∂µT + e−T 2/4

)
(2.2)

from which a solution for the equations of motion for the tachyon field is

T = µX, (2.3)

where µ is a constant and X denotes some coordinate of the spacetime manifold.

By substituing this kink solution into the unstable D9-brane action, we get the action

of a stable D8-brane (for µ → ∞). The argument can be generalized to show that from

the action for N non-BPS D9-branes, with N large enough

T (X) = µ
9−d∑

i=1

Xiγi, (2.4)
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where {γi, γj} = 2δij , is also a solution for the equations of motion, giving rise to a Dd-

brane. Notice that this expression for the tachyon field corresponds to the Atiyah-Bott-

Shapiro (ABS) construction (see for instance [10, 15]), which plays a relevant role in the

classification of D-branes by K-theory.

For the case of an unstable pair of brane anti-brane, the complete tachyon field is

given by

F =

(
0 T †

T 0

)
= µ

9−d∑

i=1

Xi

(
0 γ†

i

γi 0

)
. (2.5)

Hence, roughly speaking, Dd-branes are constructed by tachyon condensation from higher-

dimensional unstable branes and they are classified by the gauge bundles on their corre-

sponding transversal spaces.

2.2 D-branes and K-homology

In the context of Matrix theory it is possible to construct Dd-branes not from higher-

dimensional unstable brane systems, but from infinitely many lower-dimensional D-branes.

The idea was developed in [16] in order to construct commutative D-branes, which turn

out to be classified by K-homology [1] in the case where the lower dimensional D-branes

are D-instantons. The basic idea is as follows: by taking T-duality (in the euclidean space)

on the nine spatial coordinates, the action (2.2) for the non-BPS D9-brane in Type IIA,

generalized to N D9-branes for N large enough, gives

S = T−1Tr N×N

(
e−T 2/4(1 − c1[φµ, T ]2 − c2π

2[φµ, φν ]2)
)

, (2.6)

which is the action for N D(-1)-branes and where φµ are scalar fields representing the

transverse position as a function on the coordinates xν .

The corresponding equations of motion for the tachyon field have as a solution (pro-

vided µ2 = 1/c1)

T =
2πµ

α′1/2
p,

φ0 =
1

2πα′1/2
x, φi = 0, (i = 1, . . . , 9), (2.7)

where the operators x and p are identified with the transversal coordinates and momentum

of the non-BPS D(-1)-branes. Plugging this tachyon kink solution (in momentum) back

into the D(-1)-branes action provides a D0-brane action, whose position is specified by the

fields φi = 0. The argument can be generalized to construct higher-dimensional Dd-branes

in Type IIB theory from an infinite number of D(-1)-D(−1) pairs, in which case the tachyon

and scalar fields are

T = µ

d∑

j=0

pj ⊗ γj ,

φ
(1)
i = φ

(2)
i =

1

2πα′1/2
xi, (i = 0, . . . , d), (2.8)
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with µ → ∞, and γj being the 2[ d
2
]×2[ d

2
] gamma matrices in d dimensions. The superindices

in φ stand for the instanton brane and antibrane, respectively [16].

It follows then, that the tachyon matrix F can also be written as

F = µ

d∑

j=0

pj ⊗ Γj, (2.9)

with

Γj =

(
0 γj†

γj 0

)
. (2.10)

However, since the tachyon field T (which comes from the oriented string between the

instanton brane-antibrane system), is not projected out by GSO projection, represented

by the operator (−1)FL =

(
0 I

I 0

)
, the tachyon matrix F satisfies the self-dual condition

F = F †. This fact plays an important role in the next the sections.

Let us however, return to the question of classification of Dd-branes created by brane-

anti-brane instantons. As in the usual case of tachyon condensation from higher dimensional

non-BPS D-branes, the construction of D-branes from unstable D(-1)-branes leads to their

classification in terms of the so called K-homology Kn(X) [1], which roughly speaking, is

the dual to the K-theory group Kn(X) in the sense that it has a natural pairing with the K-

theory group. Instead of classifiying vector bundles on the transverse space to a Dd-brane

as in K-theory, K-homology classifies vector bundles on the worldvolume of the extended

Dd-branes constructed from unstable D(−1)-branes.2 This is generalized to construct a

Dd-brane from an unstable Dq-brane (q < d) with a tachyon configuration given by

F = µ

d+q∑

j=q+1

pj ⊗ Γj. (2.11)

2.3 Kasparov KK-theory

By virtue of the material revisited so far, it is then natural to combine the above two setups

in order to construct a Dd-brane by a kind of combination of tachyon condensation from

2More precisely, the topological K-homology of any locally compact space X classifies triples

(M,E, φ), where

• M is a compact spinc-manifold without boundary.

• E is a complex vector bundle over M .

• φ : M → X is an embedding of M in X.

The equivalence relations on the triples (M,E, φ) that define the K-homology of X have a nice physical

interpretation in terms of D-brane processes. In fact the components of the triples (M,E, φ) are easily

interpreted as the worldvolume manifold M of theD-brane, E is the Chan-Paton bundle on the worldvolume

M of the D-brane and φ is the embedding of the D-brane worldvolume in the ambient spacetime X. For

more details see [1, 3].
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higher- and lower-dimensional D-branes. For branes in Type II theories, the extension was

given in [1], together with a proposal to classify them.

In this scenario, a Dd-brane located in coordinates x0, . . . , xq−s, xq+1, . . . , xd+s is con-

structed roughly speaking by tachyon condensation from an unstable Dq-brane located in

coordinates x0, . . . , xq with a tachyon configuration given by

F = µ

s∑

i=0

Xi ⊗ Γi + µ

d+q∑

j=q+1

pj ⊗ Γj . (2.12)

The “part” of the Dd-brane localized inside the unstable Dq-brane is constructed by

tachyon condensation as in Sen’s descent relations, while the rest can be seen as constructed

from unstable Dq-branes as in section 2.2.

It turns out that the relevant group which classifies Dd-branes constructed as in the

above configuration is Kasparov KK-theory [17, 1]. Let us first of all briefly summarize some

important aspects about KK-theory (see Apendix A for a more formal and detailed de-

scription).

KK-theory is a generalization of both K-theory and K-homology, in the sense that while

both K-theory and K-homology are functors from the category of locally compact Hausdorff

topological spaces to the category of abelian groups, (i.e. classify classes of vector bundles

on the transverse space and in the worldvolume of a D-brane, respectively), KK-theory is

a bifunctor between these categories3 [17 – 20]. The bifunctor assigns to each pair (X,Y )

of locally compact topological spaces some abelian group denoted KK−n(X,Y ) for any

integer n. Here X denotes the part of the worldvolume of the D-brane (extended outside

the Dq-brane system) created from lower dimensional branes and Y is the worldvolume

of the unstable Dq-brane from which a D-brane is created by tachyon condensation (as

in the descent relations). Given such identification of the topological spaces X and Y ,

it is then expected to get some relations between KK-theory and both K-theory and K-

homology groups. Indeed, if X = {pt}, it means we do not have a D-brane (extended in

the transverse space of the Dq-brane system) created from lower dimensional branes. This

implies that Dd-branes are entirely classified by K-theory. Then

KK−n(pt, Y ) = K−n(Y ). (2.13)

Similarly, for a brane fully extended outside the unstable Dq-brane from which it

was constructed (via condensation of a tachyon field as in eq. (2.12)), the space Y is the

point-space implying that

KK−n(X, pt) = Kn(X). (2.14)

Now, as in the case of K-theory which is the set of equivalence classes of vector bundles,

KK-theory is the set of equivalence classes of Kasparov triplets (H, φ, T ). In pedestrian

3In fact, all the K-functors mentioned above have as domain the full category of C∗-algebras which

includes the category of locally compactHausdorff spaces as a subcategory by assigning to each locally

compact Hausdorff space X the C∗-algebra of continuous C-valued functions on X vanishing at infinity.

Moreover, it can be shown that each commutative C∗-algebra is of this form, X being the space of characters

of the algebra.
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words, H is the set of all Chan-Paton gauge fields living on the worldvolume of the unstable

Dq-brane (φ and T are as usual the transversal position and tachyon fields). In this sense,

a zero class representing the vacuum is gathered by a tachyon field T which condensates

trivially (i.e., without a kink solution in momentum or spatial configurations) implying

that T 2 = 1 (T has been normalized) and T and φ depending on non-conjugate position

and momentum, i.e. [T, φ] = 0. For the case in which the tachyon condensates in a non-

trivial way, it is said that the triplet is non-trivial, representing a D-brane configuration in

which the tachyon field configuration is given by eq. (2.12). Hence, KK-theory is the set of

triplets which are equivalent up to the addition of a zero-class triplet. It is, as in the case

of K-theory, an equivalence which preserves the RR charge. A formal presentation of KK-

theory groups is given in appendix A. However, for a more detailed explanation about the

interpretation of the elements defining the Kasparov modules and the equivalence relations

involved in the definition of the KK-groups, the reader is referred to [1], in which a detailed

discussion on some subtleties in the choice of the spacetime and the tachyon in the Kasparov

modules is considered.

2.3.1 D-branes and KK-theory

Let us consider the simple case of a Dd-brane in Type IIB(A) string theory, constructed

from unstable Dq-branes. In particular, for a configuration of a Dd-brane located in coor-

dinates x0, . . . , xq−s , xq+1, . . . , xd+s, the spaces X and Y ′ are given by R
d−q+s and R

9−q+s

from which the relevant KK-theory group is given by4

KK0(−1)(Rd−q+s, R9−q+s) = K0(−1)(R9−d). (2.15)

It is important to stress out that, as mentioned in appendix B, it is possible to extract infor-

mation of the system through the relation with complexified Clifford algebras Cln given by

KK−n(X,Y ) = KK(C0(X), C0(Y ) ⊗ Cln), (2.16)

where C0(X) (C0(Y )) denotes the algebra of complex valued (real valued when dealing

with orthogonal KK-groups) continuous functions in X (Y ) vanishing at infinity. Such re-

lation with Clifford algebras shall become very important in our description of Dd-branes

in more general backgrounds.

The next natural step is to classify Dd-branes in Type I theory, i.e., in the presence of

a negative RR charged orientifold nine-plane O9−. This was done in [6], where the authors

proposed that the relevant group for such classification is the real Kasparov bifunctor,

4In (2.13) we interpreted Y as the worldvolume of the unstable Dq-brane for some integer n; but similar

to K-theory, Y is also interpreted as the transverse space (with respect to the Dq-brane) of the part of

the Dd-brane localized inside the Dq-brane. This is achieved by making use of the Atiyah-Bott-Shapiro

construction in K-theory. Moreover a similar meaning is assigned to Y ′, i.e. is the transverse space of the

part of the Dd-brane extended inside the unstable Dq-brane system, but in this case the transverse space is

relative to an unstable D9 system and consequently n in (2.13) is changed depending on the string theory

we are dealing with. The KK-theory prescription in terms of Y and Y ′ are equivalent as will be shown

through out this paper.
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denoted as KKO(X,Y ), in which roughly speaking, all complex fields become real by the

orientifold nine projection (for a formal description and for more details, see appendix B).

Let us consider the Dd-brane in an O9−-plane background extended again in the

coordinates x0, . . . , xq−s , xq+1, . . . , xd+s. In this situation the Kasparov KK-theory group

turns out to be orthogonal (real) given by KKO(Rd−q+s, R9−q+s). Using the isomorphisms

from eq. (B.5), the above group reduces to

KKOq−1(Rd+s−q, Rs) = KOq−1(Rq−d) = KO(R9−d), (2.17)

as expected [12]. The relation with real Clifford algebras Cl∗,∗ is given in a similar context

as in Type II

KKOq−1(X,Y ) = KKO(C0(X), C0(Y ) ⊗ Cl
1,q), (2.18)

for which the tachyon configuration reads

F = u

q∑

α=q−s+1

xα ⊗ Γα + u
d+s∑

β=q+1

(−i∂β) ⊗ Γβ, (2.19)

where Γα and −iΓβ are in Mn(R) ⊗ Cl
1,q
odd for some n (see apendix B.2), satisfying

Γα† = Γα, (−iΓβ)† = iΓβ, (2.20)

{Γα,Γα
′

} = 2δα,α
′

, {Γβ ,Γβ
′

} = 2δβ,β
′

, {Γα,Γβ} = 0.

One can note that many physical properties of D-branes are obtained through the

analysis of Clifford algebras. Indeed, as it has been carefully studied in [6] for q = 9 and

s = 9 − d and for q = −1, it is possible to extract some information as the tension of

the Type I D-branes from the Type IIB ones and the gauge field representations of the

tachyon associated to the worldvolume field theory of the Type I Dd-branes constructed

from instantons. This is achieved by looking at the representation theory of the real Clifford

algebras involved in the definition of the KKO-groups.

3. Dd-branes in orientifold backgrounds and real KKR-theory

Up to now, we have reviewed the classification of D-branes in terms of K-theory, K-

homology and KK-theory. For instance, we have seen that the Real K-theory group KR

is the correct one to classify D-branes constructed from non-BPS D9-branes in Type II

orientifolds O1, O5 and O9. On the other hand, we have a classification of D-branes, con-

structed from non-BPS Dq-branes in Type I theory. The next thing to do is to classify

Dd-branes by KK-theory in a more general orientifold background.

By considering only Op−-planes with p = 1 mod 4, we shall propose in this section

that Real KK-theory5 is the correct group to classify Dd-branes in such backgrounds.

Following closely [6], we shall show that our proposal can also reproduce some of the

expected properties of non-BPS and BPS branes by studying the related Clifford Algebra.

5We adopt the convention in mathematical literature by refering to the orthogonal KK-theory as “real”,

and to the complex (with involution) one as “Real”.
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Figure 1: A Dd-brane constructed from a Dq-brane where d < q and (a) Dq is dimensionally

higher than the orientifold plane Op, (b) q < p.

3.1 Dd-branes from unstable Dq-branes in orientifold backgrounds and K-theory

In order to know how to construct KKR-theory groups, let us first construct a K-theory

group which classifies Dd-branes on top of an orientifold plane. Here we do not consider the

case in which (part of) the Dd-brane is constructed from lower dimensional D-branes. As

far as we know, this group has not been reported in the literature. However, its construction

is straightforward as we shall see.

The general situation can be divided in two diferent configurations: 1) The Op-plane

is immersed in the unstable Dq-brane, i.e., q > p and 2) the opposite situation in which

p > q. We concentrate on those cases in which the Dd-brane is totally immersed in the

orientifold plane. More general cases are taken into account in the KK-theory formalism.

• Case 1: q > p. The important issue is to construct the transversal space to

the Dd-brane as depicted in Fig 1(a). It is easy to see that such space is given

by R
(9−q)+(q−p),p−d, from which we can construct the associated K-theory group as

KR(R(9−q)+(q−p),p−d). By using the following relations for KR

KR(R0,m) = KO(Sm),

KR(Rn,m) = KRn,0(R0,m) = KR0,m(Rn,0),

KRn,m(X) = KR(X × R
n,m),

KRn,m(X) = KRn−m(X) = KRn−m±8(X), (3.1)

we can rewrite the K-theory group as

KR1−q(Rq−p,p−d), (3.2)
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where R
q−p,p−d is the transverse space of the Dd-brane respect the unstable Dq-

brane system.

• Case 2: p > q. Let us now consider the depicted in figure 1(b). For the orientifold

plane containing the unstable Dq-brane, the transversal space for the Dd-brane is

R
9−p,(p−q)+(q−d), for which the corresponding K-theory group is

KR(R9−p,p−d) = KR9−2p+q(R0,q−d), (3.3)

where we have again used the isomorphisms for KR in the left hand side. Notice

that the K-theory group written in such a way, allows us to identify the space R
0,q−d

as the transversal one to the Dd-brane with respect to the Dq-brane, as in case 1.

Now, let us check if the above two formulae are consistent with what we already know.

Essentially we have two limits to check. First of all, if q = p = 9 we reproduce immediately

the known formula which classifies Dd-branes in Type I theory, i.e., KO(R9−d). The sec-

ond limit to recover is Bergman’s formula for Dd-branes in Type I theory, from unstable

Dq-branes. Hence in this case, p = 9 but different from q. In such a case, the related

K-theory group reads

KRq−1(R0,q−d) = KOq−1(Rq−d), (3.4)

which indeed validates our proposal.

3.2 The real KK-theory group

We now proceed to define the KKR-theory groups relatad to the configurations so far dis-

cused.

We start by introducing the formal definition for the Real KK-theory group which we

shall apply in order to classify Dd-branes in orientifold backgrounds.

Real KK-theory groups are defined in terms of a Real C∗-algebra which is just a com-

plex C∗-algebra with an additional antilinear involution I such that I(b1b2) = I(b1)I(b2)

and I(b∗) = (I(b))∗, for every b, b1, b2 in the complex C∗-algebra. Notice as well that (by

definition) I(i) = −i.

Now, let A and B be trivially graded, separable and unital Real C∗-algebras. An

even Kasparov Real A-B-module is defined as for the complex and orthogonal cases (see

appendices A and B for details and notation), with the following additional data:

• An antilinear Real involution I on HB with the following property: I(xb) = I(x)I(b)

and (I(x),I(y)) = I((x, y)) for x, y ∈ HB and b ∈ B.

• An antilinear Real involution I on B(HB) = M2(M(B ⊗ K)) defined by I(T )(x) =

I(T (I(x))) for x ∈ HB.

• φ : A → B(HB) is a ∗-homomorphism of Real C∗-algebras, i.e. φ(I(a)) = I(φ(a))

for all a ∈ A.
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The basic KK-group for Real C∗-algebras A,B will be denoted KKR(A,B) and it is

defined as the equivalence classes of even Kasparov Real A−B-modules with the equivalence

relations defined as in the complex and real cases; with the additional requirement that

both, the homomorphisms φ and the operators T appearing in the Kasparov modules; as

well as the unitary operator generating the relation of unitary equivalence be invariant

under the Real involution (I(a) = a), i.e they belong to the fixed point algebra of the Real

algebra to which they belong.

The corresponding higher KKR-groups are denoted as KKR−n ≡ KKRn(A,B) and

defined as in the real case, but using the Real Clifford algebras p
C

n,m, with some Real

involution Ip which is determined in our case by the orientifold Op− action on the Clifford

generators.6 Hence, we denote the involution action on an element a of the Real Clifford

algebra as I9−p(a).

In this way, we have [17, 20]

KKRm−n+r−s(A,B) = KKR(A ⊗ p
Cln,m, B ⊗ p

Clr,s). (3.5)

The KKRn-groups are periodic mod 8 and KKR(A,B) = KKO(A,B) if both A and

B have trivial Real involution [20]. A Bott periodicity result also holds for Real KK-theory:

KKRk(X,Y ) = KKRk+m−n(X × R
m,n, Y ) = KKRk−m+n(X,Y × R

m,n),

KKR−m(pt, Y ) = KR−m(Y ). (3.6)

One important example that will be useful in section 4 is Y = pt. In terms of the Kas-

parov modules, the Real KK-theory group KKRm−n(C0(X), pt) = KKR(C0(X), p
Cln,m)

consist of equivalence classes of triples ( pH, pφ, pF ) where pH = p
C
∞ ⊗ p

Cln,m is the

Hilbert space over C0(pt) ⊗ p
Cln,m ≈ C ⊗ p

Cln,m, pφ : pC0(X) → pB( pH) is a ∗-

homomorphism and pF is a self-adjoint operator in pB( pH) = pB( p
C
∞) ⊗ p

Cln,m. On

all of them, the index p means that there is an induced involution I9−p (in our case from the

orientifold action on the spacetime) with the properties mentioned above. Also we require

for the tachyon and the scalar fields to be odd and even respectively under the Z2-grading.

In this context, the tachyon is written as

F =
∑

Al∈
pCln,m

odd

TlAl, (3.7)

where Tl ∈
pB( p

C
∞) which transforms on a representation determined by the self-duality

condition F = F † and the Al form a basis for p
Cln,m

odd , which denotes the odd part of

the Real Clifford algebra p
Cln,m (see appendix C). Similarly, the unitary transformation

U ∈ pB( pH) on pH, which is a gauge transformation, is even with respect to the Z2-

grading determined by (−1)FL . Hence, such transformation, together with the scalar fields,

are written as

pφ =
∑

Bl∈
pCln,m

even

φlBl, (3.8)

6We denote the Real Clifford algebras as p
C

p,q in order to distinguish them from the complex Clifford

algebras used in complex KK-theory. Also, we denote a generic field ψ under the action of the involution

I determined by the orientifold p-plane as pψ.
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Dq

Op

s

r

d−s−r

Figure 2: A Dd-brane constructed from tachyon condensation from unstable Dq-brane and unstable

D-instantons. The orientifold Op lies inside the Dq-brane worldvolume.

where φl ∈
pB( p

C
∞) and the corresponding representation is obtained from the condition

pφ = pφ†. Bl form a basis for p
Cln,m

even, which denotes the even part of the Real Clifford

algebra pCln,m.

Notice as well that the tachyon, scalar fields and the unitary transformation must be

invariant under the orientifold action, i.e., written in terms of the Clifford algebra elements,

they belong to the so-called fixed point algebra of the corresponding Clifford Algebra.7 (See

appendix C for details.)

3.3 D-branes in orientifolds and real KK-theory

With all the necessary ingredients we are in position to construct the relevant KKR-group

which classifies Dd-brane in the presence of orientifold planes. As we have seen, one can

construct it by analyzing the Dd-brane transversal space.

Let us start by identifying the spaces X and Y ′. There are two different configurations

according to the relative values between q and p, i.e., whether the plane Op− is immersed

in the unstable Dq-brane (q > p) or viceversa (p > q). Let us start with the first case as

depicted in figure 2.

We fix our notation by claiming that the final Dd-brane is located in coordinates

x0, . . . , xs, xp+1, . . . , xp+r, xq+1, . . . , xq+d−s−r. Notice also that our assumption is that the

subspace of the Dd-worldvolume of dimension (s + r) is created by the usual tachyon

7It can be shown that an element of the fixed point algebra of p
B( p

C
∞) is, roughly speaking an

infinity real matrix with no involution; then the condition of belonging to the fixed point algebra of
p
B( p

H) = p
B( p

C
∞) ⊗

p
Cln,m is equivalent to belong to the fixed point algebra of p

Cln,m times

an infinity real matrix i.e we only need to know the fixed point algebra of p
Cln,m.
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Dq

Op

s−r

r

d−s

Figure 3: Dq-brane dimensionally lower than the orientifold plane Op.

condensation from the Dq-brane, while the subspace of dimension (d − s − r) is gathered

from tachyon condensation as in the K-matrix theory. Therefore, the transversal space Y ′

to the subspace of dimension (r + s) is given by R
(9−q)+(q−p−r),p−s, while the subspace X

with dimension (d − s − r) is R
d−s−r,0. Hence it follows that the KKR-group classifying

Dd-branes in this configuration is given by

KKR(Rd−s−r,0, R(9−q)+(q−p−r),p−s) = KKR1−q(Rd−s−r,0, Rq−p−r,p−s), (3.9)

where we have used the relations (3.6) for the last two terms. We can see that Y =

R
q−p−r,p−s.

Let us now focus in our second configuration, i.e., the case in which the Dq-brane

is immersed in the orientifold plane Op− as depicted in figure 3 (p > q). Notice that

in this case, there are some transversal coordinates of the Dd-brane with respect to the

Dq-brane which are extended also inside the orientifold plane. We consider the Dd-brane

to be extended in coordinates x0, x1, . . . , xs−r, xq+1, . . . , xq+r, xp+1, . . . , xp+d−s, while the

unstable Dq and the orientifold are extended in coordinates labeled by their dimensions.

Hence the transversal space Y ′ is R
9−p,p−q+(q+r−s), while the space X is given by R

d−s,r

such that the relevant KKR-group is

KKR(Rd−s,r, R9−p,p−q+(q+r−s)) = KKR9−2p+q(Rd−s,r, R0,q+r−s), (3.10)

where in the last equality we have used the isomorphisms for KKR. Since we are working

with p = 1, 5, 9, this last group reduces to KKRq−1(Rd−s,r, R0,q+r−s). Notice that in

this way, we can identify the second entrance in the bifunctor R
0,q+r−s as the Dd-brane’s

transversal space within the Dq-brane.
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There are actually two special limits we want to consider. In type I theory one has

p = 9 and we should recover the results given in [6]. Indeed, in this case (p > q) we get

that s = d and from (3.10)

KKRq−1(Rd−s,r, R0,q+r−s) = KKRq−1(pt, R0,q−d)

= KRq−1(R0,q−d)

= KOq−1(Rq−d)

= KKOq−1(Rd+m−q, Rm), (3.11)

where m = q − d + r is the codimension between the part of the Dd-brane inside of the

unstable Dq-brane system.

The second limit we want to check is that of a Dd-brane located on top of an orientifold

with p 6= 9 and for this we can take the case q ≥ p. From figure 2 this configuration is

equivalent to set d = s and r = 0 in (3.9). Hence we have that X = pt and

KKR1−q(Rd−s−r,0, Rq−p−r,p−s) = KKR1−q(pt, Rq−p,p−d)

= KR1−q(Rq−p,p−d), (3.12)

which is in agreement with previous results from section 3.1.

One can ask what kind of extra information (with respect to K-theory) does we get from

these groups. The main point (besides some more formal statements) is that we can have

now a group which classifies D-branes intersecting orientifold planes. This can be achieved

easily by noticing that eqs. (3.9) and (3.10) can be written as KKR(Rd−s,0, R9−p,p−s)

which satisfies

KKR(Rd−s,0, R9−p,p−s) = KO(R2p−2s+d−1), (3.13)

from which we can see that specific values of q and r are not important. This means that

it does not matter which unstable brane we select to construct a Dd-brane, but how many

coordinates s of the Dd-brane are inside the orientifold plane.

3.3.1 Example 1

It is easy to check that the orthogonal KO-group in (3.13) classifies D-branes in a Type I

T-dual version. To see this, consider for instance a D3-brane in coordinates (x0, x1, x2, x3),

and an orientifold O1− located in coordinates x0, x1. By applying T-duality on coordinates

x2-x9, one gets a D7-brane in Type I theory. Such a brane is classified by KO(R2) = Z2.

Now let us check if eq. (3.13) leads us to the same group. In this case, q ≥ p and the

configuration is similar to that depicted in figure 2. It turns out that s = p = 1 and

1. r = 2 and d − s − r = 0, or

2. r = 1 and d − s − r = 1, or

3. r = 0 and d − s − r = 2.
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For all cases, eq. (3.13) gives the group KO(R2) in agreement with T-duality. The same

applies for all different configuration of D-branes and orientifold planes. The KO-theory

groups from eq. (3.13) classifies the T-dual version in Type I theory.

One can try to do the same for other type of orientifolds, like the ones with a negative

square involution (positive RR charge) and for orientifolds in Type IIA. However, for such

cases the related KK groups are not well known from the mathematical point of view.

Hence, we can only establish some expected properties for such groups based on physical

arguments. We shall comment on these issues in the section 5.

4. Unstable non-BPS D-branes in orientifolds and KKR-theory

We shall follow the criteria in [6] to show that eqs. (3.9) and (3.10) correctly classify Dd-

branes in orientifold backgrounds. Hence, we shall extract the field content of unstable

non-BPS Dq-branes from the Clifford algebra related to the KKR-group. As we have seen,

the related Clifford algebra is a complex algebra with an antilinear involution induced by the

orientifold action. In this section we shall obtain the Clifford algebra for each configuration

of non-BPS Dq-branes and Op-planes, and we shall see that the field content perfectly

agrees with that of an unstable non-BPS brane. Finally we use T-duality to show that the

properties of the non-BPS branes are those expected from non-BPS branes in Type I theory.

Our proposal for the classification of Dd-branes in Op−-plane background is given by

eq. (3.9) and eq. (3.10) according whether q > p orp > q.

By using eq. (3.5) we have that

KKR1−q(X,Y ) = KKRq−1(X,Y )

=

{
KKR(C0(X; C) ⊗ p

Cl0,q−1, C0(Y ; C)) q − 1 > 0,

KKR(C0(X; C) ⊗ p
Cl1−q,0, C0(Y ; C)) 1 − q > 0,

(4.1)

for p < q while for p > q, we have

KKRq−1(X,Y ) = KKR1−q(X,Y )

=

{
KKR(C0(X; C), C0(Y ; C) ⊗ p

Cl1−q,0) 1 − q > 0,

KKR(C0(X; C), C0(Y ; C) ⊗ p
Cl0,q−1) q − 1 > 0.

(4.2)

We shall use the above formulae as definition of the KKR-theory groups for D-brane

classification. This choice is taken in order to recover the convention in [6] where p = 9

and consequently q ≤ p. Since in this case the involution is trivial, (4.2) reduces to the

definition for KKO−n(X,Y ) used in [6]. In that sense, we classify non-BPS Dd-branes

by making them to coincide with the unstable Dq-system, implying that X = pt and that

Y = pt. By this assumption we can safely conclude that all information about these non-

BPS D-branes relies on the corresponding Clifford algebras. All what we need to specify

is the involution action on the Clifford algebra generators.

4.1 The real involution and orientifolds

Let us describe explicity how the real involution acts on the Clifford generators induced by

the orientifold Op−-plane.
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0 1 2 · · · q-1 q q+1 · · · p-1 p p+1 · · · 8 9

Op− − − − − − − − − − − × × × ×

Dq − − − − − − × × × × × × × ×

Table 1: Coordinates of the relative positions of a Dq-brane inside an orientifold plane Op (q < p).

The complexified Real Clifford algebra is defined as

p
Cln,m = p (Cln,m ⊗ C) . (4.3)

Since the involution acts as conjugation on the complex part we can write (see appendix

C for details)

p (Cln,m ⊗ C) = pCln,m ⊗ C, (4.4)

where C denotes the field of complex numbers with Real involution defined by usual complex

conjugation and pCln,m denotes the Clifford algebra Cln,m with some Real involution

(again, this involution is determined by the orientifold plane on the generators of the

algebra and extended by linearity).Thus, it suffices to study the involution in the real

part pCln,m. Hence, we shall concentrate on how to fix the involution inhereted from the

orientifold Op−-plane on the generators of the real Clifford algebra.

According to eqs. (4.1) and (4.2) the complex Clifford algebras with involution we

use, are of the form p
Cln,0 or p

Cl0,n. Hence we shall concentrate on the involution on

their associated orthogonal (real) Clifford algebras, whose generators can be identified

with spatial coordinates via the vector space isomorphism

Cln,0 ∼= Λ∗
R

n ∼= Cln,0. (4.5)

Let us consider the case in which 1−q < 0 such that the related Clifford algebra is p
Cl0,q−1.

By the above isomorphism we identify the generators ei, (i = 1, . . . , q − 1) of the Clifford

algebra Cl0,q−1 with vectors of the little group SO(q − 1) of a Dq-brane.

Hence, the involution inhereted form the orientifold p-plane, denoted as I9−p acts on

the generators of the complex Clifford algebra as in the longitudinal coordinates xi to the

Dq-brane. Because of this, the involution depends on the relative value between p and q.

Then, if q < p we consider a Dq-brane inside the orientifold plane, as in table 1. This

configuration induces a trivial involution on all the Clifford algebra generators

I9−p(ei) = ei for all i. (4.6)

On the other hand, if q > p, the unstable Dq-brane is located as shown in table 2 and the

involution is given by

I9−p(ei) =

{
ei for i = 1, . . . , p − 1,

−ei for i = p, . . . , q + 1.
(4.7)
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0 1 2 · · · p-1 p p+1 · · · q-1 q q+1 · · · 8 9

Op− − − − − − − × × × × × × × ×

Dq − − − − − − − − − − × × × ×

Table 2: A configuration consisting in an Op-plane inside an unstable Dq-brane with q > p.

By Bott periodicity and eqs. (4.1) and (4.2) we have

KKR(X, p
Cl0,q−1) = KKR(X, p

Cl9−q,0). (4.8)

In this way, we can use instead the (9 − q) generators ei of p
Cl9−q,0, with i = q + 1, . . . , 9

which are identified with the transversal coordinates to the Dq-brane. The involution is

again dependent on the relative values between q and p. For q < p (see figure 3) we have

I9−p(ei) =

{
ei for i = 1, . . . , p − q,

−ei for i = p − q + 1, . . . , 9 − q,
(4.9)

while for q > p we have

I9−p(ei) = −ei for all i. (4.10)

Therefore, one sees that for q > 2, we have at least two different ways to identity the

Clifford algebra generators with spatial coordinates i.e. internal or transversal coordinates

to the Dq-brane system. For each identification there are two choices for the involution on

the Clifford generators, depending on the relative value of q and p. However we also see that

for q < p is simpler to establish the identification with internal coordinates to the Dq-brane,

while for the case p < q is the opposite. We shall adopt this identification henceforth.

Although the identifications are not so geometric for q < 2, we have similar involutions.

For q = −1 the relevant Clifford algebra is pCl2,0 and the involution acts on the generators

as I9−p(ei) = ei (i = 1, 2). Similarly for q = 0, the Clifford algebra is pCl1,0 and the

involution acts also trivially on the generator.

4.2 Non-BPS D-branes in orientifold backgrounds

Now, we are going to get the representations of the tachyon, gauge and scalar fields from the

corresponding Clifford algebras, following the procedure used in [6], and we will show that

they correspond to the properties of unstable non-BPS Dd-branes classified by the groups

in eqs. (3.9) and (3.10). Due to Bott periodicity in KKRn(X,Y ) ∼ KKRn±8(X,Y ), all

cases are considered within the range −4 ≤ n ≤ 4. However, in contrast with D-branes

in Type I theory, the involution acts different for a Dq-brane than for a D(q + 8)-brane.

Notice as well that, although eqs. (3.9) and (3.10) do not depend on p (in these kinds of

non-BPS branes), the involution does.
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0 1 2 3 4 5 6 7 8 9

O1− − − × × × × × × × ×

D8 − − − − − − − − − ×.

Table 3: Relative positions of the O1−-plane and the D8-brane from example 1.

4.2.1 Example 1

Consider for instance the case of a non-BPS D8-brane and an O1−-plane in a configuration

as described in table 3.

The corresponding group is KKR−7(pt, pt) ∼ KKR1(pt, pt) with an associated Real

Clifford algebra 1
Cl1,0. The action of the involution on the generator of 1Cl1,0 is given by

I8(e1) = −e1. (4.11)

This determines the fixed point algebra for 1
Cl1,0 and hence, the corresponding represen-

tation for the tachyon, gauge and scalar fields. By imposing the condition I8(a) = a for

a ∈ 1
Cl1,0, one gets that

(
1
Cl1,0

)
fix

= Cl0,1, (4.12)

which fixes the tachyon T and the scalar field φ to be symmetric tensor representations

of the gauge group O(∞). As it was shown in [6], these results correspond to the field

content of an unstable non-BPS D2-brane in Type I theory. This is in agreement with

formula (3.9) since for this case8 p = s = 1, d = q = 8 and r = 7, and the relevant KKR

group is given by

KKR−7(pt, pt) = KO(R7) = 0, (4.13)

which indeed is the K-theory group which classifies D2-branes in Type I theory. One can as

well check that under T-duality on transversal coordinates to the O1−-plane, the unstable

D8-brane transforms into a D2-brane in Type I theory. Notice that the involution does not

change for p = 5, for which we get the same field content for a D8 in an O5−-plane.

4.2.2 Example 2

Contrary to the case in Type I theory, the field content for a non-BPS D0-brane in an O1−-

plane (as shown in table 4) should not be the same than for a D8. This is obtained by

realizing that for a D0-brane, although the Real Clifford algebra also is 1
Cl1,0, the involu-

tion on the single one generator e1 is trivial, I8(e1) = e1. This implies that

(
1
Cl1,0

)
fix

= Cl1,0. (4.14)

Therefore, the tachyon field T and the scalar field φ are antisymmetric and symmetric

tensor representations, respectively, of the gauge group O(∞) [6]. This field content is

8Actually, as we shall see, similar conditions hold for all unstable non-BPS D-branes.
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0 1 2 3 4 5 6 7 8 9

O1− − − × × × × × × × ×

D0 − × × × × × × × × ×

Table 4: Relative positions of a D0-brane inside an O1−-plane as described in example 3.

precisely that of an unstable non-BPS D0-brane in Type I theory. This also is in agreement

with formula (3.10) in which r = s = q = d = 0 and p = 1, implying

KKR−1(pt, pt) = KO(R1) = Z2, (4.15)

which classifies D8-branes in Type I theory. Indeed, the configuration of a D0-brane in an

O1−-plane is T-dual to a D8 in an O9−-plane. For p = 5, the involution is the same and

we get the same group.

4.2.3 Example 3

Another interesting situation presents for q = 5, i.e., D5-branes in O1− and O5−-planes.

The Real Clifford algebra is given by p
Cl4,0 for p = 1, 5. In this case, the involution acts

as I4(ei) = −ei for i = 2, 3, 4, 5. As a consequence, the fixed point algebra is Cl0,4. For

this case, we can also take the Real Clifford algebra as p
Cl4,0 = p

Cl0,4. However the

involution acts trivially on the corresponding generators. The fixed point algebra is then

Cl4,0. It is easy to check that Cl4,0 = Cl0,4. Hence, as it was shown in [6], the tachyon and

scalars fields transforms in the bifundamental and antisymmetric tensor representations of

the gauge group Sp(∞)× Sp(∞). This is the field content of a pair D5-D5 branes in Type

I theory, which agrees with the result given by

KKR−4(pt, pt) = KO(R4) = KSp(pt) = Z. (4.16)

The complete set of Real Clifford algebras for all unstable non-BPS branes is summarized in

table 5. The representations and gauge groups for each case are recovered from the results

shown in [6] just by computing the fixed point algebras, as in the previous examples. For

completness we summarize such results in appendix C (see table 7).

4.3 Dq-branes from D-instantons in orientifold backgrounds

As we have said, we shall follow the criteria in [6] to test the validity of formulae (3.9), (3.10).

For that we are going to show explicitly the construction of a Dd-brane from an infinitely

many number of instantons in the presence of an orientifold plane O1− or O5−. In [6] the

authors found that the tension of Dd-branes in Type I theory are related to the size (di-

mension of the representation) of SO(d) gamma matrices. In the case of lower dimensional

orientifold planes, we shall get a similar relation.

The strategy in [6] adapted to our case is as follows. An explicit configuration repre-

senting a Dd-brane is gathered by constructing the corresponding configuration in Type

IIB, based on D-instanton-anti-D-instanton, which survives after the orientifold projection.
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Dd p
Cln,m (pCln)fix KKRn KOn(pt) T-dual in Type I

p = 1 D(-1) 1
Cl2,0 Cl2,0 KKR−2 KO−2 = Z2 D7

p = 5 5
Cl2,0 KKR−10 KO−10 = Z2 D(-1)

D0 1
Cl1,0 Cl1,0 KKR−1 KO−1 = Z2 D8

5
Cl1,0 KKR−9 KO−9 = Z2 D0

D1-D1 1
Cl1,1 Cl1,1 KKR0 KO0 = Z D9-D9

5
Cl1,1 KKR−8 KO−8 = Z D1-D1

D2 1
Cl0,1 Cl1,0 KKR−1 KO−1 = Z2 D8

5
Cl0,1 Cl0,1 KKR−7 KO−7 = 0 D2

D3 1
Cl0,2 Cl2,0 KKR−2 KO−2 = Z2 D7

5
Cl0,2 Cl0,2 KKR−6 KO−6 = 0 D3

D4 1
Cl0,3 Cl3,0 KKR−3 KO−3 = 0 D6

5
Cl0,3 Cl0,3 KKR−5 KO−5 = 0 D4

D5-D5 1
Cl0,4 Cl4,0 KKR−4 KO−4 = Z D5+D5

5
Cl0,4

D6 1
Cl3,0 Cl0,3 KKR−5 KO−5 = 0 D4

5
Cl3,0

D7 1
Cl2,0 Cl0,2 KKR−6 KO−6 = 0 D3

5
Cl2,0

D8 1
Cl1,0 Cl0,1 KKR−7 KO−7 = 0 D2

5
Cl1,0

Table 5: KKR-groups and their related Clifford algebras, fixed point algebras and KO-theory

groups for unstable Dq-branes in O1− and O5−-planes. The empty entries stand for the same

expressions as the preceding row.

Hence, since the relevant Real Clifford algebra related to a system of D(−1)-D(−1) is

Cl2,0, and being the tachyon field odd with respect to the Z2-grading, it can be written as

F = T1ê1 + T2ê2, (4.17)

where ê1, ê2 ∈ Cl2,0
odd = (Cl2,0

odd ⊗C), and T1 and T2 are real fields. Besides this, the tachyon
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field is self-dual (F = F †) and is invariant under the involution I9−p, i.e.

I9−p(F ) = F, (4.18)

which makes it belongs to the fixed point algebra of the corresponding Real Clifford algebra.

Then, the tachyon field can also be written as

F = Tae1 + Tbe2, (4.19)

where Ta and Tb are complex fields and e1, e2 ∈ Cl2,0
odd. Defining the field T = Ta +Tbe1∧e2

one gets that T = −T † due to the self-duality condition on F . In particular, we observe

that for an O9−-plane, the involution acts trivially on all Clifford algebra generators. This

implies that Im Ta = Im Tb = 0 and that T = −TT.

Now, since for a Dd-brane constructed from instantons, the tachyon field also reads

F = µ
d∑

i=0

pi ⊗ Γi, (4.20)

comparing with eq. (4.19) we conclude that

Ta = ∂0 ⊗ γ0,

Tb = ∂j ⊗ γj
d, (4.21)

with (γµ
d+1)

† = γµ
d+1 being hermitian γ-matrices, which in the abscence of an orientifold

plane, are irreducible hermitian SO(d + 1) gamma matrices. In the presence of orientifold

planes O5− and O1−, it turns out that the involutions I4 and I8 act trivially on the

generators e1 and e2 (as in the Type I case). This renders the gamma-matrices to split

into γ0 = I and SO(d) gamma matrices γi (i = 1, . . . , d) with the latter forming a real

representation of Cl0,d. Using this information we can compare the size of the tachyon

in Type IIB and in the presence of orientifold planes. The ratio does not depend on

p, implying that the tension (and size) of a Dd-brane in an O5−, O1− and O9− (as in

the configurations considered in the previous section) is twice than that in Type IIB for

d = 3, 4, 5, 6, 7. Notice that for p = 1, 5 the Dd-branes with twice the tension than in

Type IIB are T-duals to those in Type I theory which also have twice the tension as their

counterparts in Type IIB. This is shown in table 6. Notice as well, as it was pointed out

in [6], that this is consistent with the construction of D-branes in Type I theory, since those

branes in an Op−-plane with twice the tension than in Type IIB, are T-duals to Type I

D-branes constructed from two Type IIB branes or a pair of brane-antibrane.

This is our last test to show that indeed, KKR-theory truly classifies D-branes charges

in (the provided) orientifold backgrounds.

5. A proposal for classification of D-branes in Op+-planes

In [1] and [6] KK-theory and KKO-theory are used to classify D-branes in Type II and Type

I superstring theories respectively. Also in this paper we have extended this classification

to orientifold backgrounds in Type IIB string theory by using KKR-theory.
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Dd D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Size in IIB 1 1 2 2 4 4 8 8 16 16

Size in IIB + Op-plane, p = 1, 5 1 1 2 4 8 8 16 16 16 16

T-dual into Type I (p = 1) D8 D7 D8 D7 D6 D5 D4 D3 D2 D1

T-dual into Type I (p = 5) D0 D1 D2 D3 D4 D5 D4 D3 D2 D1

Table 6: Relative dimension of the representation between gamma matrices related to Dd-branes

in Type IIB and in Op−-backgrounds with p = 1, 5.

Then, it is natural to think about the possibility of other KK-theories,9 extending the

K-theory classification of superstring theories in different backgrounds than those appearing

in this paper. In particular, we focus on Type IIB Op+ orientifolds (the involution induced

on the Chan-Paton bundles is τ2 = −1) which are classified by quaternionic K-theory,

denoted KH [13] and symplectic USp(32) (IIB + O9+) string theory proposed in [21]

which is classified by symplectic K-theory, denoted KSp.

We focus on these particular backgrounds because their associated K-theories have

close relation with KO and KR theories10 and consequently, we can conjecture some rela-

tions that their corresponding KKH and KKSp theories must satisfy.

For this purpose, we first write some properties and relations between KH, KSp and

KO theories:

KH(X) ≃ KH−8(X), (5.1)

KHp,q(X) ≃ KHp+1,q+1(X) ≃ KHp−q(X), (5.2)

KH(XR) ≃ KSp(XR), (5.3)

KSp(Sn) ≃ KO(Sn+4). (5.4)

In (5.3), XR is the fixed point set of the involution of the spacetime and this property

reflects the fact that KH-theories are T-duals of USp(32) theory, with the involution acting

on the dualized coordinates. For example if we start with USp(32) theory and we do not

make any T-duality, then the involution does not act at all in the spacetime; so in this case

the fixed spacetime is the fixed point set of the involution; in this way KSp(X) = KH(X)

and USp(32) theory can be regarded as (IIB + O9+)-string theory, in the same way Type

I string theory can be seen as (IIB + O9−)-string theory.

The most important property we shall assume in all KK-theory groups KK−n(X,Y )

proposed here is that when either X or Y is the one point space, they reduce to the

respective K-theory and K-(analytic) homology functors.11 One consequence of this prop-

9At least those KK-theories related with K-theories classifying consistent stringy backgrounds.
10In [6], though they do not make explicit mention of KKSp theory, they use the relation between KO

and KSp theories to conclude that USp(32) theory is classified by KKOq+3, where q is de dimension of the

unstable D-brane in the USp(32) theory. But USp(32) string theory is a consistent theory, then there should

exist KKSp theory, which should be related to KKO-theory in a suitable way to achieve the KKO-groups

proposed in [6].
11As in the case of KR-homology, there should be a suitable definition of topological K-homology and it

must be possible to prove the equivalence with the analytical K-homology defined above.
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erty is that our KK-functors must preserve the original periodicity of their K-functors, i.e

n mod 8 periodicity.

Let us start with (IIB + O9+) backgrounds, i.e. KKH-theory. Both the crucial for-

mula (3.6) of KKR-theory and the similar property (5.2) of KH-theory shared by KR-theory

allowed us to compute the KKR-groups and to confirm our proposal; then we also assume

that KKH-theory should obey a similar property:

KKHk(X,Y ) = KKHk+p−q(X × R
p,q, Y ) = KKHk−p+q(X,Y × R

p,q). (5.5)

Suppose we have a configuration similar to that of figure 2 (for our present purposes

it is enough to restrict our attention to this system; but it is straightforward to adapt the

following arguments for the configuration of figure 3. In analogy with the Op− orientifolds,

we propose that the KKH-group classifying stable D-brane configurations is given by

KKH(Rd−s−r,0, R(9−q)+(q−p−r),p−s). (5.6)

In this way the calculations are identical to the ones that lead to (3.9); so we have

KKH(Rd−s−r,0, R(9−q)+(q−p−r),p−s) = KKH1−q(Rd−s−r,0, Rq−p−r,p−s), (5.7)

which can be written, by using (5.1)–(5.4), in the following way:

KKH1−q(Rd−s−r,0, Rq−p−r,p−s) = KSp(R2p−2s+d−1) = KO(R2p−2s+d+3). (5.8)

If we take r = 0 and d = s, then the stable Dd-brane is located on top of the orientifold

plane and (5.8) reduces to:

KKH1−q(R0,0, Rq−p,p−d) = KSp(S2p−d−1) = KO(S2p−d+3), (5.9)

which is precisely Gukov’s prescription for D-branes located on top of Op+ orientifolds.

Then the basic properties of KKH-groups mentioned above are enough to carry on the

classification of stable D-branes in Op+ orientifolds.

To construct the corresponding “quaternionic Kasparov module” the first step is to de-

fine a “quaternionic C∗-algebra”; which means a Banach ∗-algebra A over the quaternionic

field such that, the C∗-equation ‖x∗x‖ = ‖x‖2 holds for any x ∈ A.

Then, one can follows the path traced in [17] by substituting the fields R or C by

H; and the complex, real and Real Clifford algebras by the quaternionic Clifford algebras

Cln,m
H

12 endowed with some C∗-algebra structure. Of course, along the way there may be

some subtleties associated with the specific properties of H, such as noncommutativity.

Now, we turn to USp(32) string theory. Suppose that in this theory we have a con-

figuration similar to the one described in the paragraph above equation (2.15). Then we

postulate (in accordance with (2.17)) that stable D-branes are classified by

KKSpq−1(Rd+s−q, Rs). (5.10)

12
Cl

n,m

H is defined as the tensor product of the real Clifford Algebra Clm,n with the quaternionic field,

i.e Cl
n,m

H = Clm,n ⊗ H.
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In order for (5.10) to reproduce the K-theory group of the transverse space of the Dd-brane,

we postulate the following property analogous to (B.5):

KKSpk(X,Y ) = KKSpk−n(X × R
n, Y ) = KKSpk+m(X,Y × R

m). (5.11)

In this way we get

KKSpq−1(Rd+s−q, Rs) = KSp(R9−p)

= KO−4(R9−p) = KKOq+3(Rd+s−q, Rs). (5.12)

From the above equation we reproduce the claim in [6] that D-branes in USp(32) string

theory are classified by KKOq+3(X,Y ). So, we claim that

KKSpi(X,Y ) = KKOi+4(X,Y ) = KKOi−4(X,Y ). (5.13)

5.1 An application: exotic orientifolds

We know that for p < 6 there are a variatey of orientifold planes, characterized by their RR

and NS-NS charge [22 – 24]. It is interesting to realize that a cohomological classification of

the RR and NS fluxes, tells us that there are at least 4 different types of orientifold planes

for p < 6 but only 3 in a K-theoretical classification [25, 24].13

At the level of cohomology, there are two different types of orientifold related to RR

fluxes. They are classified by the torsion part of the group H6−p(RP8−p, Z̃) = Z2 which

is interpreted as a half-shift in RR charge, defining the exotic orientifold planes Õp. The

brane realization of this type of orientifold plane Op is depicted in figure 4, where roughly

speaking, an exotic Õp-plane is constructed by wrapping a D(p + 2)-brane in a two-cycle

of the transverse space RP8−p of an Op-plane .

However, it can be shown [24] that a K-theoretical classification of RR fields gives

more information such as an explanation for the relative charge between different types of

orientifold planes. In this context Op− and Op+-planes are classified (through their RR

fields) by KRp−10(S9−p,0) and KRp−6(S9−p,0) = KHp−10(S9−p) respectively. For p = 1, 5

we have the values

O1− : KR−1(R8,0) = Z ⊕ Z2,

O1+ : KR−5(R8,0) = Z,

O5− : KR−5(R4,0) = Z,

O5+ : KR−1(R4,0) = Z ⊕ Z2. (5.14)

The abscence of a torsion part in the group for O5−-planes, is interpreted (via the Atiyah

Hirzebruch Spectral Sequence) as a shift in the RR charge by a half-unit, explaining the

relative fractional charge between them and the exotic ones denoted Õ5−. In this sense is

easy to see that Õ5+ has the same RR charge than O5+. For the case of O1-planes, we have

13Actually, if one consider an S-dual version of the conecction between cohomology and K-theory (called

the Atiyah-Hirzebruch Spectral Sequence) there are just two different types of orientifolds classified by

K-theory [26, 27].
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Op
Op~

D(p+2)

Figure 4: Brane realization of Õp-planes.

exactly the same situation, although there are extra Z2 constributions from cohomology.

Once we compare this information with the corresponding K-theory groups, we arrive to

the same conclusions as for the O5-planes [24].

Hence, although the existence of these exotic orientifolds comes from cohomology and

a more accurate description about their RR charges is given by K-theory, this is actually

a classification of RR fields. The D-brane realization of exotic orientifolds suggests on the

other hand, a K-theory classification of D-brane (charges). Since an Õp-plane is constructed

by a D(p+2)-brane wrapping a two-cycle transversal to the orientifold, it should be enough

to classify such configuration of branes in an orientifold background to elucidate their

existence. This is precisely what KKR-theory does at least for p = 1, 5, 9.

Consider for instance the case of an O5−-plane and a D7-brane wrapping a two-cycle

transversal to the orientifold plane. Let us take the configuration given by q < p (the same

result can be obtained by taking p < q). Hence we have d − s = 2 and s = 5. The related

KKR-theory group is

KKR−6(pt, pt) = KO(R6) = 0, (5.15)

which tells us that there is no extra contribution in K-theory to the O5−-planes. On the

other hand, for the O1-planes, we have that d− s = 2 and s = 1. The related KKR-theory

group is then

KKR−2(pt, pt) = KO(R2) = Z2, (5.16)

which is also in agreement with (5.14). Finally, we can check that for the cases of O5+ and

O1+, the proposed KKH-theory groups gives the expected results. For the O5+-plane we
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have that the relevant KK-theory group is

KKH−6(pt, pt) = KSp(R6) = KO(R2) = Z2, (5.17)

while for O1+ we have that

KKH−2(pt, pt) = KSp(R2) = KO(R6) = 0. (5.18)

This confirms that an orientifold classification in terms of branes rather than fields is easily

gathered by KK-theory.

6. D-branes in orbifold singularities and KK-theory

So far our main focus has been on the prescription of D-branes in orientifolds. In this section

we describe how to incorporate the equivariant version KKG(X,Y ) of the Kasparov KK-

theory bifunctor to the Dd-brane classification scheme. The expected group is KKG(X,Y )

since the K-theory group classifying D-branes in orbifold singularities is the equivariant

group KG(X) [10, 28].

For simplicity we will concentrate in the case where the dimension q of the unstable

Dq-brane system is higher than the dimension p of the transverse space to the orbifold

singularity. The reader can extend the formulation for q ≤ p by following the arguments

in this section and section 3.3.

6.1 Type IIB orbifolds and equivariant KKG-theory

In order to describe orbifold singularities with equivariant KKG-theory we assume a group

G acting on the (9−p) coordinates (xp+1, . . . , x9) of spacetime in a Type IIB string theory,

i.e. the spacatime is

R
p+1 × (M9−p/G). (6.1)

Let us concentrate on the case of flat spacetime by taking: M9−p = R
9−p. Then, the

general form of a subspace of spacetime is as follows:

R
α,β = (Rα/G) × R

β. (6.2)

In [29] it is shown that the K-theory group classifying D-branes in orbifold singularities

in Type IIB string theory is the equivariant group KG(X), where X is the transverse space

to the Dd-brane with respect to the spacetime (or an unstable system of D9-D9 spacetime

filling D-branes). The arguments explained in section 2.1 for the IIB string theory can

be applied here. Indeed, the KG-group classifying stable D-branes in the Type IIB orb-

ifold singularity with respect to an unstable Dq-brane system is given by Kq−1
G (X), where

X is now the transverse space of the stable Dd-brane relative to the unstable Dq-brane

system, with p ≤ q.

Our goal is to classify all possible stable Dd-branes in the spacetime (6.1) by using

equivariant KKG-groups and incorporating the unstable information of the Dq-brane sys-

tem mentioned above.
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Using the above remarks and appendix B.1, we claim that the group classifying any

Dd-brane located in the orbifold singularity is KKq−1
G (X,Y ), where Y is the portion of

the spacetime supporting the unstable Dq-branes and X is the transverse space to Y with

coordinates (xq+1, . . . , x9) in the whole spacetime. The present subsection will be devoted

to prove this claim.

It is worth to mention again the limiting cases. For Dd-branes extended totally outside

the worldvolume of the unstable system, we can take Y as a point. Then KKq−1
G (X, pt)

is the group classifying D-branes extended along X. This is precisely the KG-homology of

X which classifies D-branes by their worldvolume. Similarly, if the D-brane is extended

completely inside the unstable system, the group classifying stable D-branes is the equiv-

ariant K-group KKq−1
G (pt, Y ) = Kq−1

G (Y ) classifying in terms of the transverse space of

the D-brane relative to the unstable system.

Thus in the general case, given a Dd-brane whose position lies both inside and outside

of the unstable Dq-brane ambient, the two entries of the KKG-functor should be filled

firstly by the worldvolume X of the portion of the D-brane outside the unstable system.

The second item Y of codimension m corresponds to the transverse space of the Dd-brane

in the unstable Dq-brane.

Then the spaces filling the KKG-functor entries depend strongly in the directions where

the Dd-brane is extended, but not on its dimension d.

To be more specific, consider an unstable system of Dq-branes placed at the orb-

ifold singularity and extended along (x0, . . . , xq) and place a Dd-brane extended along

(x0, . . . , xq−m, xq+1, . . . , xd+m) where the spacetime is the orbifold defined above,14 with

q − m ≦ p ≦ q . Then the KKG-theory group classifying this system is

KKq−1
G (Rd+m−q,0, Rq−p,p−q+m). (6.3)

Using (D.1) and assuming that G acts by a spinor representation we find that:

KKq−1
G (Rd+m−q,0, Rq−p,p−q+m) = KG(R9−p−(d+m−q),p−q+m). (6.4)

At first sight the above equation depend on the dimension q of the unstable brane

system, and this would rule out our proposal because the Dq-brane is an auxiliary device

for the KK-theory formalism, and the result should not depend on it. Then let us argue

that this result is indeed independent of q and at the same time we will see that our result

is in full agreement with [29]. Remember that from this reference for the Type IIB orbifold

with the group Z2 acting by reflection on n coordinates (n = 4 mod 4 in order to preserve

some supersymmetry), we say that a Dd-brane is of type (r, s), where d = r+s, if it has r+1

Neumann directions with Z2 acting trivially on them and s Neumann directions inverted

by Z2. Then for a given (r + s)-brane, the transverse space has dimension 9 − (r + s);

of which n − s directions are inverted under the action of Z2. Then the KG-theory group

classifying Dd-branes in this orbifold is

KZ2
(Rn−s,9−n−r). (6.5)

14If d ≥ q then m ≤ 9 − d.
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This result is tested by computing these KZ2
-groups and comparing the result with the

boundary state formalism, finding full agreement [29].

Though eq. (6.5) is just for Z2, we will prove that this result is valid for every group

acting on the spacetime by means of the spinor representation and then we will argue that

the action Z2 for which (6.5) is valid acts precisely in this way. If we compare our original

system with the one described above, we find the following correspondences:

n = 9 − p, d = r + s, s = d + m − q. (6.6)

With these relations one can easily express (6.4) as

KKq−1
G (Rs,0, Rq−p,p−q+m) = KG(Rn−s,9−n−r), (6.7)

which is exactly (6.5) with a general group G acting by the spinor representation instead of

Z2. In (6.5) we only assume the existence of the D9-D9 unstable system and from (6.7) we

see that for each Dq-brane system our proposal is equivalent to (6.5). Then we conclude

that the KKG-formalism is independent of the Dq-system.

Now we argue why the Z2-action assumed above is spinor. In appendix D we mention

that G acts on R
n through the spinor representation if it acts by a group homomorphism

G 7→ Spinn. By this we mean a homomorphism α : G 7→ Spinn such that, when composed

with the natural action of Spinn on R
n (x 7→ γxγ−1, x ∈ R

n, γ ∈ Spinn) we get a

representation (which induces an action) of G on R
n.

Consider a D4-brane (d = 4) such that r = 1 and s = 3. Then we can think of the

orbifold Z2-action x ∼ −x, with x ∈ R
3 as a π-rotation around some rotation axis in

R
3; but we know that each rotation in R

3 can be generated by SU(2) ≃ Spin3 acting on

R
3 through Pauli matrices. In our particular situation, the homomorphism assigning to

−1 ∈ Z2 the π-rotation U , such that

x 7→ UxU−1 = −x, x ∈ R
3

does the job. Therefore we can see in this particular example how the Z2 orbifold action

considered in [29] fits in our formalism.

Though it is not easy to find the homomorphism G 7→ Spinn for higher values of n, the

arguments given above generalize to any n because Spinn is the double covering of SO(n),

and consequently, to each SO(n) rotation always correspond at least one element in Spinn.

We have generalized [29] (at least for the case of flat noncompact orbifolds) because

our formalism applies to any group action on the spacetime which can be described as a

rotation around some axis. Our result also includes some of the examples studied recently

in [30], where the orbifold actions are rotations around some axis of the spacetime. In

particular, we generalized the flat orbifolds in [30] of the form Zk for any k ∈ N and

Zk × . . . × Zk (without discrete torsion).

Now we consider an example discussed in [30]. This is the orbifold C
3/Z3, with space-

time of the form R
4 × C

3/Z3, where (x0, x1, x2, x9) are the coordinates in which Z3 acts

trivially and zi = 2−
1

2 (x2i+1 + x2i+2), i = 1, 2, 3 are the coordinates where the generator g

of G acts in the form

g(z1, z2, z3) → (exp(2πiυ1)z
1, exp(2πiυ2)z

2, exp(2πiυ3)z
3), (6.8)
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where (υ1, υ2, υ3) = (1
3 , 1

3 ,−2
3 ). The action (6.8) is clearly a rotation in C

3. Therefore

the action of Z3 on any D-brane with s Neumann coordinates in C
3/Z3 can be seen as a

rotation of the s-coordinates and hence as a spin representation of Z3 in Spins and hence

this example is also included in our formalism.

Now we describe the gauge theory living in the unstable Dq-brane system [31]. Fol-

lowing [6], we focus on the stable D-branes which are outside the worldvolume Y of the

unstable Dq-brane system and consequently Y can be set to be a point. In our case we

need to take into account the images of this point under the action of the group; thus we

set Y to be the space of t-points, where t is the cardinality of G. The KKG-theory group

classifying the above D-branes with respect the Dq-unstable system is given by

KKq−1
G (X, {t points}) = KKG(C0(X), C({t points}) ⊗ Cl9−q

= KKG(C0(X), (⊕t
i=1C)⊗Cl9−q)=KKG(C0(X),⊕t

i=1(C⊗Cl9−q))

=

t⊕

i=1

KKG(C0(X), C ⊗ Cl9−q). (6.9)

Thus we can associate a “gauge group” for each direct summand in (6.9). If we assem-

ble these gauge groups in a block diagonal matrix, we get a matrix M with t blocks and

such a matrix belongs to the algebra B(C0(t points)∞) ⊗ Cl9−q of adjointable opera-

tors on C0(t points)∞ ⊗ Cl9−q, which is the appropriate Hilbert module for describing

KKq−1
G (X, {t points}). Moreover, M represents the gauge group of the low energy effec-

tive field theory on the Dq-brane worldvolume, which is of the form (for a finite number

of branes)
∏t

i=1 U(Ni) or
∏t

i=1(U(Ni)×U(Ni)), where R = ⊕t
i=1Niri is the representation

of G on the Chan-Paton factors and ri are the irreps of G. Of course, each block in M

is infinite because in order the KK-theory make sense we must assume the presence of an

infinite number of Dq-branes [1].

If we take for instance, q = 7 then following ref. [6] and the preceding section, the gauge

group associated to each of the factors in
⊕t

i=1 KKG(C0(X), C ⊗ Cl9−q is determined by

[Cl2even] = C⊕C which corresponds to U(∞)⊗U(∞). Thus the gauge group of the unstable

D7-brane system in the orbifold singularity is (as expected) given by
∏t

i=1(U(∞)⊗U(∞)).

7. Final remarks

In this paper, we have extended to Type IIB orbifold and Op−-orientifold backgrounds the

KK-theory formalism proposed in [1, 6] for Type IIB and Type I string theory respectively.

In particular, for the orientifold case, we considered Op−-planes with p = 1, 5, 9, for

which the presented formalism naturally incorporates stable D-branes intersecting the ori-

entifold planes, generalizing in this sense the proposal in [13] for the mentioned cases. This

is achieved by constructing D-branes from unstable Dq-branes in which the final D-brane

has internal and external coordinates with respect to the Dq-brane. In this sense, the

internal coordinates are identified with the space Y and the external ones with the space

X, where X and Y are the entrances in the KKR-theory bifunctor KKR(X,Y ).
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Specifically we propose that Dd-branes intersecting Op−-planes are given by the groups

in eqs. (3.9) and (3.10)

KKR(Rd−s−r,0, R(9−q)+(q−p−r),p−s) = KKR1−q(Rd−s−r,0, Rq−p−r,p−s) for p < q,

KKR(Rd−s,r, R9−p,p−q+(q+r−s)) = KKR9−2p+q(Rd−s,r, R0,q+r−s) for p > q.

In order to show that these groups correctly classify the corresponding configurations of

D-branes and orientifolds, we also compute, by extensive use of the Clifford algebras and

the structures defined on them, the gauge group and transformation properties of the

effective fields living in the worldvolume of the unstable Dq-branes. The transformation

properties of the tachyon and scalar fields of this unstable systems are read from the fixed

point Clifford algebra. This algebra consists of Clifford generators invariant under the

involution, determined in turn by the action of the corresponding orientifold plane. The

set of algebras related to different configurations is listed in table 5 in text. In all cases we

found perfect agreement with Type I T-dual versions, as reported in [6]. This shows that

Clifford algebras contain relevant information about stability, RR charge and construction

of D-branes in general backgrounds.

However, although this formalism seems powerful enough, the mathematical informa-

tion in literature concerning other physical relevant cases, as positive RR charged orien-

tifolds, is limited. Working out with expected physical properties instead, we have proposed

some KK-theory groups related to the mentioned cases. In particular we have proposed

some versions of KK-theory (KKH and KKSp) based on the existence of consistent string

theories with D-branes carrying quaternionic and symplectic Chan-Paton bundles. More-

over, we propose, based on their respective K-theories some simple properties of these

bifunctors. We also give some clues on how the appropiate structures should be incorpo-

rated on the Kasparov modules entering the KKH-theory definition. Similar arguments

should apply to KKSp-theory.

As a matter of probe, we have applied this formalism, including the proposal on positive

RR charged orientifolds, to elucidate the existence of the so called exotic orientifold planes.

These planes have been classified by K-theory, but in terms of RR fields. A brane realization

of exotic planes reveals a configuration of brane and orientifold planes, for which it is

possible to apply the present formalism. For the considered cases, we have found that a

brane classification of this planes is possible by means of KK-theory. The results are also

in agreement with the RR field classification.

In the orbifold case we reproduce the proposal in [29] in terms of equivariant KG-theory

for a Z2-orbifold. Moreover, we argued that this prescription is valid for any G-action by

means of the spinor representation. In this way our formalism includes every G-action

that can be seen as a space-time rotation; including in particular the Type IIB examples

considered in [30] of flat orbifolds without discrete torsion (we include an explicit example

of the orbifold C
3/Z3 discussed in this reference and show that Z3 acts on C

3 by the spinor

representation), where the explicit KG-groups (and hence KKG-groups) are calculated. We

also recover the gauge theory in the unstable Dq-brane systems of Type IIB string theory

orbifold spacetimes.
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In [25] the K-theory formalism is incorporated to the classification of fluxes in Type

IIB string theory which are not sourced by D-branes. It is then natural to incorporate the

KK-theory formalism for the classification of these fluxes. Some research in this direction

was addressed in [4, 7]

In [32] T-duality is explained in terms of certain isomorphisms of relative K-theory

for spacetime compactifications in Tn. So, compactifying the spacetime, amounts to

define “relative KK-theory” [33] and the incorporation of T-duality would imply some

isomorphisms in the corresponding “relative KK-groups”. Some considerations about T-

duality and KK-theory has been discussed in another context in [7, 8] (for a recent review

see [34]). Finally, in analogy with [35] it should be interesting to incorporate a topologi-

cally non-trivial B-field background to the KK-theory classification of D-branes, leading to

a twisted KK-theory.
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A. Complex KK-theory

We start by defining a Kasparov module.15 Let (A,B) be a pair of trivially graded,

separable, unital and complex C∗-algebras. An odd Kasparov A-B module is a triple

(HB , φ, T ), where

• HB = B∞ is the Hilbert B-module defined as follows:

B∞ =

{
(xk) ∈

∞∏

n=1

B |
∑

k

x∗
kxk converges in B

}
.

• φ : A → B(HB)16 is a unital ∗-homomorphism.

• T ∈ B(HB) is a self-adjoint operator such that

T 2 − 1, [T, φ(a)] ∈ K(HB) = B ⊗K for all a ∈ A, (A.1)

where K(HB) is defined such that any pair of elements, x, y ∈ HB, gives rise to a

map Θx,y : HB → HB given by Θx,y(z) = x(y, z), for all z ∈ HB . Then K(HB) is the

15Though there are several approaches to Kasparov modules [17, 18, 20], we will use the Fredholm picture

which fills out our requirements for physical interpretations.
16If E is any Hilbert B-module for a C∗-algebra B, we will denote as B(E) the set of adjointable operators

i.e. the operators T : E → E such that there exist an operator T † : E → E with (Ta, b) = (a, T †b) for all

a, b ∈ E, and (a, b) is the B-valued inner product of HB as a Hilbert B-module.
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closed linear span of {Θx,y : x, y ∈ HB} and it is a closed two sided ideal in B(HB).

Note that when B is the field of complex numbers, then K(HB) is identified with the

space of compact operators on HB (denoted K), and HB is identified with the space

of square summable sequences in the complex numbers.

An odd Kasparov A-B module is called degenerate if

T 2 − 1 = [T, φ(a)] = 0 for all a ∈ A. (A.2)

Now, we define some relations on the set of odd Kasparov A-B modules:

• Two triples (HB , φ0, T0) and (HB , φ1, T1) are called unitarily equivalent if there ex-

ists an unitary operator U ∈ B(HB) with T0 = U∗T1U and φ0(a) = U∗φ1(a)U for

all a ∈ A.

• Let (HB , φi, Ti) be odd Kasparov A-B modules for i = 0, 1; let (E,φ, T ) be an odd

Kasparov A-B ⊗ C[0, 1] module and let ft : B ⊗ C[0, 1] → B denote the evalua-

tion map ft(g) = g(t). Then (HB, φ0, T0) and (HB , φ1, T1) are called homotopic and

(E,φ, T ) is called a homotopy if (E ⊗fi
B, fi ◦ φ, fi∗(T )) is unitarily equivalent to

(HB , φi, Ti), i = 0, 1, where fi∗(T )(a) := fi(T (a)).

• If E = C([0, 1],HB) and for all a ∈ A the induced maps t → Tt, t → φt(a) are strongly

∗-continuous, then (E,φ, T ) is called a standard homotopy. When in addition φt is

constant and Tt is norm continuous then we say that (E,φ, T ) is an operator homo-

topy.

• In the definition of the group KK1(A,B), two odd Kasparov modules (H, φi, Ti),

i = 0, 1 are defined to be equivalent (and denoted ∼oh) if there are degenerate Kas-

parov modules (HB , φ′
i, T

′
i ), i = 0, 1 such that (HB⊕HB, φi⊕φ′

i, Ti⊕T ′
i ), i = 0, 1

are operator homotopic up to unitary equivalence. Then KK1(A,B) is the set of

equivalence classes of odd Kasparov modules under ∼oh.

The other KK-group KK(A,B) ≡ KK0(A,B) is the set of equivalence classes of

Z2-graded triples (Ĥ, φ̂, F ), called even Kasparov A-B modules, with

Ĥ = H0 ⊕H1, φ̂ = diag(φ0, φ1), F =

(
0 T †

T 0

)
, (A.3)

where Hi (i = 0, 1) are Hilbert B-modules, φi : A → B(Hi) is a unital ∗-homomorphism

for i = 0, 1 and T ∈ B(H0,H1) is an adjointable operator such that

T †T − 1, TT † − 1, Tφ0(a) − φ1(a)T ∈ B ⊗K for all a ∈ A. (A.4)

The grading is induced by the standard even grading operator diag(1,−1) where we

identify B(ĤB) = M2(M(B ⊗K)) = M(B ⊗K), where M(B ⊗K) is the multiplier algebra

of B ⊗K and M2(A) is the C∗-algebra of 2× 2 matrices with entries in the C∗-algebra A.

The group KK0(A,B) is defined as the set of equivalence classes of even Kasparov

modules with the equivalence relation ∼oh defined above.
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It can be proved that KK1(A,B) = KK0(A,B ⊗ Cl1) with Cl1 being the complex

Clifford algebra generated by {1, e1}, where e2
1 = 1. This is the approach we will take for the

definitions of the real, Real and equivariant KK-groups for real, Real C∗-algebras and G-

algebras. In general, one can define higher KK-groups as KKn(A,B) = KK(A,B ⊗Cln),

but periodicity mod 2 tells us that the only KK-theory groups are KK0 and KK1.

B. Orthogonal (real) KK-theory

The real KKO-group is defined similarly as above, but substituting complex objects by

real ones (real C∗-algebras, real Hilbert B-modules, etc.). In other words, the structures

are defined over the field of the real numbers instead of the complex numbers field.

To define the higher real KKO-groups we need to define a real C∗-algebra structure

in the real Clifford algebra Cl
n,m, where Cl

n,m is generated (as an algebra over R) by

{ei ∈ R
n+m}i=1,...,n+m with the relations

eiej + ejei = 0 (i 6= j),

e2
i = −1 (i = 1, . . . , n), (B.1)

e2
i = 1 (i = n + 1, . . . , n + m).

The C∗-algebra involution is defined on the generators {ei ∈ R
n+m} as follows:

e∗i = −ei (i = 1, . . . n),

e∗i = ei (i = n + 1, . . . , n + m), (B.2)

(e1 · · · el)
∗ = e∗l · · · e

∗
1,

and extending it by linearity.

It can be shown [17, 20] that KKO(A⊗ Cl
n,m, B ⊗ Cl

r,s) depends only on (m − n)−

(s − r), so we can define with no ambiguity:

KKOm−n+r−s(A,B) = KKO(A ⊗ Cl
n,m, B ⊗ Cl

r,s). (B.3)

Thus, for n ∈ Z we define

KKO−n(A,B) = KKOn(A,B) =

{
KKO(A,B ⊗ Cl

n,0) n > 0

KKO(A,B ⊗ Cl
0,−n) n < 0

}
. (B.4)

The KKOn-groups are periodic mod 8.

Both, complex and real KK-theories share the following crucial property called Bott

Periodicity:

KKOk(X,Y ) = KKOk−n(X × R
n, Y ) = KKOk+m(X,Y × R

m), (B.5)

where R
n stands for C0(R

n). In general, for any locally compact topological spaces X

and Y , we denote KKOn(X,Y ) ≡ KKOn(C0(X), C0(Y )), where C0(X) (C0(Y )) is the

C∗-algebra of continuous real (or complex when we are dealing with KK-groups) valued

functions on X (Y ), vanishing at infinity.
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B.1 KK-theory applied to D-branes

Suppose we have a spacetime of the form X × Y (with dimY = q + 1) and an unstable

system of an infinite number of Dq-branes extended on Y , in Type II string theory. It

was proposed in [1] that the solitonic configurations (which turn out to be D-branes) of

this system are classified by the complex KK-groups: The KK1(X,Y )-group for non-BPS

Dq-branes and KK0(X,Y )-group for a Dq- Dq system (Dq denotes an anti Dq-brane) of

stable Dq branes. The grading for the even Kasparov modules described in the definition

of the KK0-group is associated with the Dq- Dq-branes.

Now, we will review the way KKO-groups are applied to classify D-branes in Type I

string theory.

In [12] it is argued that the K-theory group classifying Dd-brane charges inside the

worldvolume of an unstable Dq-brane system in Type I string theory is the real K-theory

group KOq−1(Y ), where Y is the worldvolume manifold of the unstable system. The

proposal in [6] is that the group that correctly classifies D-branes stretched along both

longitudinal and transverse directions to the unstable Dq-brane system is KKOq−1(X,Y )

where X and Y have the same meaning that in the complex case.

The elements of KKO0(X,Y ) can be interpreted in the same way as for Type II string

theories in terms of Dq- Dq-brane system (for q = 0, 9) wrapped in Y .

In general KKO(C0(X), C0(Y ) ⊗ Cl
n,m) consists of equivalence classes of triples

(Ĥ, φ̂, F ) where Ĥ = C0(Y )∞ ⊗ Cl
n,m, φ̂ : C0(X) → B(Ĥ) is a ∗-homomorphism, and

F is a self-adjoint operator in B(Ĥ) = B(C0(Y )∞ ⊗ Cl
n,m). We have the additional re-

quirement that φ̂(a)(a ∈ C0(X)) be even and F odd with respect to the Z2-grading. In

this way, we can write:

F =
∑

vr∈Cl
n,m

odd

Tr ⊗ vr, φ̂(a) =
∑

wr∈Cl
n,m
even

Φr ⊗ wr, (B.6)

where Tr,Φr ∈ B(C0(Y )), wr and vr span the sets of even an odd elements in Cln,m denoted

as Cl
n,m
even and Cl

n,m
odd .

B.2 Field content in unstable type I non-BPS branes

As it was studied in [6], the field content representation of an unstable non-BPS Dq-brane

in Type I theory can be elucidated from the real Clifford algebra since in this case, as can

be seen from B.1, the tachyon and scalar fields satisfy some requirements. The tachyon

field is an odd self-adjoint operator, while φ is an even self-adjoint map. This fixes their

representations under the gauge transformation, which is an even unitary transformation

on the Hilbert space H. For completness we reproduce the results obtained in [6] in table 7.

For Dq-branes in orientifold backgrounds like those studied in this paper (O1− and

O5−) it suffices to compute the fixed point algebra (pCln,0)fix or (pCl0,n)fix. These fix point

algebras are in general of the form Cln,0 or Cl0,n (with the only exception of algebras related

to non-BPS D1 and D9 branes). This algebra fixes in turn the field content and gauge group

for each case. This was explicity done in [6] which results are summarized in table 7.
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Dq Cln,m φ T Gauge group

D(-1) Cl2,0 adj. U(∞)

D7

D0 Cl1,0 O(∞)

D8

D1 Cl1,1 (1, ),( ,1) ( , ) O(∞) × O(∞)

D9

D2 Cl0,1 O(∞)

D3 Cl0,2 adj. U(∞)

D4 Cl0,3 Sp(∞)

D5 Cl4,0 (1, ),( ,1) ( , ) Sp(∞) × Sp(∞)

D6 Cl3,0 Sp(∞)

Table 7: Field content of unstable non-BPS Dq-branes in Type I theory and the relevant real

Clifford algebra, as obtained in Reference [6].

C. Clifford algebras and real KKR-theory

In this appendix we will describe the additional structure in the Clifford algebras which is

necessary for the definition of the KKR bifunctor.

C.1 Even and odd parts of the real Clifford algebra

In the Clifford algebra Cln,m there is a natural grading induced by the map α : Cln,m 7→

Cln,m acting on the generators like α(ei) = −ei for all i = 1, . . . , n+m. Then, α is extended

to the whole Clifford algebra by linearity. In this way, the real Clifford algebra splits in

even and odd parts, defined as the eigenspaces with eigenvalues 1 and -1 respectively, i.e.

Cln,m = (Cln,m)even ⊕ (Cln,m)odd, (C.1)

where a ∈ (Cln,m)even if α(a) = a and a ∈ (Cln,m)odd if α(a) = −a.

A general element of Cln,m can be written as

α = ai1ei1 + ai1i2ei1i2 + · · · + a1···(n+m)e1···(n+m) =

n+m∑

k=1

∑

i1<i2<···<ik

ai1···ikei1···ik , (C.2)

where ei1...ik ≡ ei1 · ei2 · . . . · eik .

It is easy to show that the even and odd parts can be expressed in the following way:

(Cln,m)even =
{
α ∈ Cln,0|α = a0 + ai1i2ei1i2 + ai1i2i3i4ei1i2i3i4 + . . .

}
,

(Cln,m)odd =
{
α ∈ Cln,0|α = ai1ei1 + ai1i2i3ei1i2i3 + . . .

}
. (C.3)

From now, we will concentrate on the algebras Cln,0.17

17Notice that for the complex Clifford algebra Cln, we have Cln = Cln,0
⊗ C ∼= Cl0,n

⊗ C. Then all

expressions and facts in this appendix are valid for the analog ones for Cl0,n.
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The grading in the Clifford algebra Cln,0 induce a grading in the complex Clifford

algebra Cln as follows:

Cln = Cln,0 ⊗ C

=
(
(Cln,0)even ⊕ (Cln,0)odd

)
⊗ C

= ((Cln,0)even ⊗ C) ⊕ ((Cln,0)odd ⊗ C)

≡ Cln,0
even ⊕ Cln,0

odd. (C.4)

Hence, an element a in the even part of Cln ≡ Cln,0 is just written as α ⊕ (β ⊗ i) with

α, β ∈ Cln,0
even, and a similar expression for the odd part.

C.2 Fixed point algebra

An element a in the complexified Clifford algebra Cln = Cln,0 ⊗ C is given by

a = α ⊕ (β ⊗ i), (C.5)

where α and β are elements of the real Clifford algebra Cln,0.

Suppose that there is a Real involution defined on Cln, such that it is now a Real

algebra denoted p
Cln,0 (as explained in section 3.2, the involution is given by the action

of the orientifold plane on the generators of the algebra and extended by linearity).

On the other hand we have

p
Cln,0 = p

(
Cln,0 ⊗ C

)
= pCln,0 ⊗ C, (C.6)

where C denotes the field of complex numbers with Real involution defined by usual complex

conjugation and pCln,0 denotes the Clifford algebra Cln,0 with some Real involution (again,

this involution is determined by the orientifold plane on the generators of the algebra and

extended by linearity). Then it is enough to select the proper involution on the generators

of Cln,0 to know the involution on p
Cln,0.

The fixed point algebra of p
Cln,0 is defined as the set of elements in p

Cln,0 which are

invariant under the involution,18 i.e.

(
p
Cln,0

)
fix

=
{
a ∈ p

Cln,0| a = a ≡ I9−p(a)
}

, (C.7)

where I9−p(i) = −i. Hence an element of the fixed point algebra must satisfy the following

constraint

α ⊕ (β ⊗ i) = α ⊕ (β ⊗ (−i)) = α ⊕ ((−β) ⊗ i) = α ⊕ (β ⊗ i). (C.8)

As a trivial example, consider p = 9. Then for any unstable Dq-brane system,19 we have

q ≤ p. Following the criteria explained in section 4.1, we define the involution to be the triv-

ial one in each generator of the relevant Clifford algebra Cl0,q−1. Then, by (C.8) we identify

(
9
Cl0,q−1

)
fix

= Cl0,q−1. (C.9)

18This definition applies to any algebra with some Real involution.
19For simplicity, suppose q > 2.
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This is expected since in an O9−-plane background, i.e. in Type I theory, the whole

nine-dimensional space is a fixed point under the orientifold involution and hence, D-branes

are characterized by orthogonal Clifford algebra, as shown in [6].

As explained in section 4, the tachyon, the scalar fields and the gauge transformation on

the unstable Dq-brane system all belong to the fixed point algebra and to some of the even

or odd parts of 9
Cln,0 for some n. It turns out that for selecting an element with some of

these properties, it is enough to compute the fixed point algebra (as explained above), which

will be isomorphic to a real Clifford algebra Clr,s for some r and s.20 Then we just need to

compute the natural even and odd part of Clr,s as a Clifford algebra as explained in C.1.

D. Equivariant KK-theory

In this appendix we will describe the pertinent modifications to the KK-theory bifunctor

described earlier to define the equivariant KKG-theory, which turns out to be the appropiate

tool for the classification of D-branes in orbifold singularities. A C∗-algebra A is called a

G-algebra if there is a compact group G acting on it by the automorphism group, i.e., by

a map α : G 7→ Aut(A). In this appendix all C∗-algebras are required to be G-algebras.

The G-action is said to be continuous if α : G 7→ Aut(A) is continuous. This definition

is rephrased by requiring that the induced map G × A 7→ A : (g, a) 7→ g(a) is norm

continuous, where A is realized as an operator algebra with the strong operator topology.

By the Hilbert G-module HB we mean the Hilbert B-module HB together with a linear

action of G, such that:

• g(xb) = g(x)g(b) for all g ∈ G, x ∈ HB , b ∈ B,

• (g(x), g(y)) = g((x, y)) for all g ∈ G, x, y ∈ HB ,

where (x, y) is the B-valued inner product of HB as a Hilbert B-module. We have the

additional condition that this action be norm-continuous i.e the map g 7→ ‖(gx, gx)‖,

x ∈ HB is norm continuous in the strong operator topology. An element x ∈ HB is said to

be invariant if g(x) = x for all g ∈ G.

In B(HB) there is an induced natural action as follows: If F ∈ B(HB), then g(F ) is

defined as (g(F ))(x) = g(F (g−1(x))), g ∈ G, x ∈ HB. This induced G-action is not

norm continuous in general and those F for which this holds are called G-continuous. They

make up a C∗-subalgebra of B(HB) which contains K(HB).

Now, consider all even Kasparov G-modules (HB, φ, F ), i.e. the set of even Kasparov

modules such that:

• HB is a G-Hilbert B-module.

• φ : A 7→ B(HB) is an equivariant ∗-homomorphism.

• F ∈ B(HB) is an invariant (in particular, G-continuous) element.

20Notice that on Clr,s there is not a Real involution anymore and both r and s depend on the Real

involution defined in p
Cln,0 or equivalently in Cln,0.
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Then the equivariant KKG-group, denoted KKG(A,B) is defined as the set of equiv-

alence classes of even Kasparov G-modules under the equivalence relation ∼oh defined

exactly as in appendix A, but with the additional condition that the operator U ∈ B(HB)

generating the unitarily equivalence relation be invariant under the G-action.

The higher KKG-groups KKn
G(A,B) are defined as before, i.e KKn

G(A,B) =

KKn
G(A,B ⊗ Cln) where G acts trivially on Cln and again they have periodicity mod 2.

The KKG-groups share the analog of the property (B.5) of KK-groups:

KKk
G(X,Y ) = KKk−n

G (X × R
n, Y ) = KKk+n

G (X,Y × R
n), (D.1)

with the additional requirement that G acts on R
n by means of the spinor representation,

i.e. by a group homomorphism G 7→ Spinn.

One of the most important properties shared by all versions of Kasparov K-

theory is additivity:

KKG(A,B1 ⊕B2 ⊕ · · · ⊕Bn) = KKG(A,B1)⊕KKG(A,B2)⊕ · · · ⊕KKG(A,Bn). (D.2)

A similar expression also holds for the first of the entries in the KKG-functor.

We mention it here because it is particularly important for calculating the low energy

effective gauge theory living in the worldvolume of an unstable D-brane system placed at

an orbifold singularity.
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